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Abstract 

Genome-wide association studies (GWAS) ha v e identified numerous genetic variants associated with diseases and traits. Ho w e v er, the functional 
interpretation of these variants remains challenging. Expression quantitative trait loci (eQTLs) have been widely used to identify mutations linked 
to disease, y et the y e xplain only 20–50% of disease-related variants. Single-cell eQTLs (sc-eQTLs) studies provide an immense opportunity to 
identify new disease risk genes with expanded eQTL scales and transcriptional regulation at a much finer resolution. Ho w e v er, there is no 
comprehensive database dedicated to single-cell eQTLs that users can use to search, analyse and visualize them. Therefore, we developed the 
scQTLbase ( http:// bioinfo.szbl.ac.cn/ scQTLbase ), the first integrated human sc-eQTLs portal, featuring 304 dat asets spanning 57 cell t ypes and 
95 cell states. It contains ∼16 million SNPs significantly associated with cell-type / state gene expression and ∼0.69 million disease-associated 
sc-eQTLs from 3 333 traits / diseases. In addition, scQTLbase offers sc-eQTL search, gene expression visualization in UMAP plots, a genome 
browser, and colocalization visualization based on the GWAS dataset of interest. scQTLbase provides a one-stop portal for sc-eQTLs that will 
significantly advance the discovery of disease susceptibility genes. 

Gr aphical abstr act 

I

G  

i  

e  

t  

c  

e  

w  

 

 

 

 

 

 

 

 

R
©
T
(
o

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad781/7288825 by guest on 04 O

ctober 2023
ntroduction 

enome-wide association studies (GWAS) have successfully
dentified numerous genetic variants linked to various dis-
ases and traits. However, the functional characterization of
hese variants remains limited and challenging ( 1 ). To elu-
idate the mechanism linking genetic variants to diseases,
xpression quantitative trait loci (eQTLs) analysis has been
idely employed. This analysis helps identifying causal vari-
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millions of cells from whole tissues or samples, potentially ob-
scuring biologically regulatory relationships that are specific
to certain cell types ( 6 ,7 ). These limitations have significantly
restricted the applicability of bulk eQTLs in understanding the
biology of disease-associated variants, resulting in only 20–
50% of common disease alleles colocalize with eQTLs ( 6 ). 

To elucidate the connections between gene regulation and
disease, single-cell eQTLs (sc-eQTLs) have emerged as a valu-
able resource. By profiling transcriptomes at the individual cell
level, sc-eQTL analysis minimizes cell dilution and enables
studying regulatory relationships at a higher resolution ( 8–
10 ). Various types of sc-eQTLs have been discovered and anal-
ysed in different contexts, including cell-type-specific eQTLs
(genetic variants that are associated with the expression of
specific cell types), dynamic eQTLs (genetic variants that are
associated with changes in gene expression over continuous
or time), response eQTLs (genetic variants that are associ-
ated with changes in gene expression in response to stimuli)
( 6 ,11 ). For instance, in 2018, van der Wijst et al. identified
single-cell eQTLs in ∼25 000 peripheral blood mononuclear
cells (PMBCs) from 45 individuals ( 10 ). Cuomo et al. explored
dynamic eQTLs during iPSC differentiation toward definitive
endoderm using 125 individuals across four time points ( 12 ).
Oelen et al. found that response eQTLs were typically more
cell-type specific than pathogen-specific when exposing 1.3
million peripheral blood mononuclear cells (PBMCs) in vitro
to Mycobacterium tuberculosis , Candida albicans and Pseu-
domonas aeruginosa ( 13 ). In addition, Sarkar et al. investi-
gated variance eQTLs by analysing cell-to-cell gene expres-
sion variability in 5 447 induced pluripotent stem cells (iPSCs)
from 53 Yoruba individuals ( 14 ). Over a dozen sc-eQTL stud-
ies have been published so far ( 11 ), and large collaborative ef-
forts, such as the eQTLGen Consortium and the DICE project,
have provided valuable resources and greatly facilitated our
understanding of how genetic variants influence gene regula-
tion at the cellular level ( 15 ,16 ). Despite these advancements,
there is still a lack of a comprehensive database that integrates
available sc-eQTLs from various studies, enabling seamless
querying, browsing, downloading, and visualization at the cel-
lular level. Establishing such a comprehensive large-scale sc-
eQTL database would create an atlas of disease-related vari-
ants that were overlooked by traditional bulk studies, allow-
ing for a more powerful and in-depth analysis of GWAS loci.
Hence, integrating large-scale sc-eQTL datasets is crucial for
identifying causal variants and advancing our understanding
of gene regulation in the context of human disease. 

In this work, we conducted a systematic collection of
summary-level results from 16 published studies and manu-
ally curated 304 independent sc-eQTL datasets spanning 57
cell types and 95 cell states / simulations following a stan-
dardized approach. Through the implementation of a highly
interactive web interface, we developed a versatile database
named scQTLbase ( http:// bioinfo.szbl.ac.cn/ scQTLbase ), rep-
resenting the first sc-eQTL database offering convenient cata-
loging, searching, browsing, downloading, and visualization
of single-cell regulatory data. scQTLbase also serves as an
open resource specifically designed for meta-analyses, revis-
iting GWAS findings, and deciphering disease-associated risk
SNPs at single-cell resolution. By providing an accelerated
platform for interpreting the mechanisms underlying the re-
lationship between genetic variants and diseases, scQTLbase
significantly contributes to our understanding of complex dis-
ease biology. 
Materials and methods 

Data collection and processing 

We conducted a manual collection of single-cell eQTL datasets 
from published literature, adhering to a predefined set of rules: 
(i) the selected studies utilized actual samples from a diverse 
range of biological contexts, including normal, treated or dis- 
ease conditions. We excluded datasets from meta-analysis or 
secondary analyses. To ensure sufficient power for sc-eQTLs,
we included only studies with a minimum of 40 samples or 
5 000 cells. (ii) We included only single-cell transcriptome 
data generated using well-established and reliable sequencing 
technologies such as 10 ×, Smart-seq / Smart-seq2 and CITE- 
seq. (iii) We considered both eQTL datasets derived from 

genome-wide primary eQTL mapping and local-region eQTL 

mapping. After applying these stringent inclusion criteria and 

thoroughly reviewing the literature, we identified and retained 

16 studies in our database (Table 1 ). There are two types of 
data obtained from the collected literature, including sc-eQTL 

summary statistics data and gene expression. The summary 
statistics data were preprocessed by collecting the following 
information: genetic variant (identified by dbSNP rsID or ge- 
nomic coordinates), the genes that are affected by the vari- 
ant, the strength and direction (effect size) of the association 

between the variant and gene expression, and statistical mea- 
sures including P -values and standard error. Gene expression 

data are preprocessed into a 2D matrix where each row corre- 
sponds to a gene, and each column corresponds to a cell bar- 
code. The values in the matrix represent the expression level 
of each gene in each cell, typically measured as normalized 

expression values. 

Variant normalization 

Variants with a dbSNP identifier were harmonized based on 

dbSNP build 151 ( 17 ) and aligned to the hg38 human genome 
version. During this process, positional information, as well 
as the alternative and reference alleles, was extracted and 

recorded for each variant. By aligning variants to a standard- 
ized reference, scQTLbase ensures consistency and simplifies 
cross-study and cross-dataset comparisons of variants. More- 
over, the effective allele of each sc-eQTL is preserved from its 
original publication. 

Statistical value normalization 

The sc-eQTL summary statistics dataset contains essential sta- 
tistical values, including P -value, effect size (beta), standard er- 
ror and false discovery rate. In instances where specific statisti- 
cal values are not available in the original dataset, we calculate 
the missing value based on other additional information. For 
instance, if P -values are not provided, we derive them from z - 
scores, and in cases where standard error values are missing,
we calculate them based on available P -values and effect sizes.

Cell type mapping 

To address the challenge of inconsistent cell type names 
across different studies and datasets, we obtained expert- 
annotated cell type reference datasets from Azimuth ( 18 ).
Subsequently, we conducted a manual review of each cell 
type name, accurately mapping them to the appropriate ref- 
erence label. This process enabled us to align cell types 
with multiple names in different studies to their correspond- 
ing references. For instance, ‘t4’, ‘CD4T’ and ‘CD4’ are 

http://bioinfo.szbl.ac.cn/scQTLbase
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Table 1 . 1 6 sc-eQTL studies collected in scQTLbase 

Study Number of cells Number of donors Type 

Bryois-2022-Nat. Neurosci. 36 000 192 individuals Genome-wide 
Jerber-2021-Nat. Genet. > 1 million 215 iPSC lines Genome-wide 
Nathan-2022-Nature > 500 000 259 individuals Genome-wide 
Natri-2023-bioRxiv 437 618 116 individuals Genome-wide 
Neavin-2021-Genome Biol. 83 985 79 fibroblast and 31 iPSC Genome-wide 
Oelen-2022-Nat. Commun. 1.3 million 120 individuals Genome-wide 
Perez-2022-Science > 1.2 million 162 SLE and 99 healthy Genome-wide 
Randolph-2021-Science 0.2 million 89 individuals Genome-wide 
Resztak-2022-Genome Res. 292 394 96 Individuals Genome-wide 
Schmiedel-2022-Sci. Immunol. > 1 million 89 individuals Genome-wide 
Soskic-2022-Nat. Genet. 655 349 119 individuals Genome-wide 
YAZAR-2022-Science 1.27 million 982 individuals Genome-wide 
Cuomo-2020-Nat. Commun. 36 044 125 individuals Genome-wide 
Van der Wijst-2018-Nat. Genet. 25 000 45 individuals Genome-wide 
Kang-2017-Nat. Biotechnol. 22 000 23 individuals Genome-wide 
Wills-2013-Nat. Biotechnol. 1440 15 individuals Targeted gene sets 
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ormalized to ‘CD4 T’. We also named cell types using both
heir full names and common abbreviations, if available. For
xample, ‘monocyte’ and ‘Mono’ are normalized to ‘Mono-
yte (Mono)’. Furthermore, for cell types not present in the
eference dataset, such as ‘iPSC’, we have standardized them
o ‘Induced pluripotent stem cells (iPSC)’. Altogether, we stan-
ardized 154 previously non-unified cell types to 57 canoni-
al cell types (Supplementary Table S1). To provide more de-
ails about cell types, we have linked cell type names with
he cell IDs from Cell Ontology ( https:// www.ebi.ac.uk/ ols/
ntologies/cl ), a widely used database for cell type annotation
 19 ). For instance, ‘CD4+ T cell’ cell type is now linked with
CL_0000624’. To facilitate easy access to additional informa-
ion, we have added hyperlinks to each cell type name in the
earch result table. These hyperlinks direct users to dedicated
ages with more comprehensive descriptions of the cell types,

ncluding details on cell types, origins, biological processes,
nd function roles. 

atabase design 

he scQTLbase platform was developed using a flask-based
eb framework, ensuring efficient data storage and retrieval.
o ensure retrieval speed, we stored gene expression profile
nd genotype data as flat files, while eQTL data was stored in
 MySQL database. For data analyses and visualization, we
everaged our recently developed xQTLbiolinks ( 20 ) and in-
ouse R scripts. Interactive web pages were developed using
 combination of HTML, CSS, JavaScript, and Python lan-
uages along with various JavaScript libraries, including react-
loty.js and IGV.js, and the widely-used react-TDesign compo-
ent library for building interactive websites. To provide users
ith a seamless experience, we implemented a highly interac-

ive UMAP plot for directly viewing specific cell types of in-
erest. Additionally, we incorporated an interface for GWAS-
c-eQTL colocalization to visualize colocalized signals. The
cQTLbase platform is freely accessible online, and there is
o requirement for registration or login. For optimal perfor-
ance, we recommend using Chrome as the web browser. 

isualization of UMAP panel 

n order to visualize single-cell dataset, we followed two ap-
roaches: first, we utilized the principal components (PCs)
rovided in the literature, and if not available, we performed
rincipal component analysis (PCA) to derive the top 20 PCs.
Subsequently, we employed Uniform Manifold Approxima-
tion and Projection (UMAP) ( 21 ) to project the PCs into
a lower-dimensional space, positioning the cells based on
UMAP dimensions and color-coding them to represent spe-
cific cell types or clusters. Additionally, we identified highly
variable expression genes using Seurat, and users now have
the option to select genes of interest from a drop-down box,
enabling the visualization of their expression patterns across
different cell types. 

Marker gene and eGene 

To determine marker genes for UMAP clusters in each study,
we first filtered genes that are expressed in at least 25% of
cells in both the target cell cluster and all other cells. Then,
we performed differential expression analysis between each
cell type and all other cells. Marker genes are identified with
log 2 (fold change) > 1 and adjusted P -value < 0.05. We iden-
tified eGenes whose expression level has been associated with
at least one genetic variation at a specific genetic locus. 

Identification of trait-associated sc-eQTLs 

To identify potential trait-associated sc-eQTLs, we first em-
ployed a Bayesian co-localization approach using the coloc
package ( 22 ). We collected 26 GWAS datasets correspond-
ing to the populations and tissues of sc-eQTL studies in-
cluded in our database (Supplementary Table S2). For each
GWAS, we determined independent loci by extracting vari-
ants with at least genome-wide significance ( P -value < 5 ×
10 

−8 ) and located at least 1 Mb away from all other variants
with higher statistical significance. Subsequently, we extracted
a list of all eGenes (genes that have at least one significant
sc-eQTL) within 1 Mb of each genome-wide significant vari-
ant for further colocalization analyses. To ensure the robust-
ness of our results, for each eGene we excluded any variants
lacking both eQTL and GWAS association statistics, includ-
ing effect size estimate, standard error, and P -value. Addition-
ally, colocalization analyses were conducted for matched tis-
sues of GWAS and sc-eQTLs using coloc with default parame-
ters ( 19 ). A region or eGene was considered to show evidence
of co-localization when the region- or gene-based posterior
probability of co-localization (PP4) was > 0.75. 

Next, we gathered significant SNPs from 3 333 GWAS
datasets (Supplementary Table S3) collected in NHGRI GWAS
catalog ( 1 ) and filtered out those without dbSNP identifiers.

https://www.ebi.ac.uk/ols/ontologies/cl
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Subsequently, we retrieved significant sc-eQTLs from scQTL-
base and assessed linkage disequilibrium (LD) in the corre-
sponding population between GWAS lead SNPs and sc-eQTL
variants. We define the lead SNP as the SNP within a locus
having the lowest P -value. sc-eQTLs with an R2 (a measure of
linkage disequilibrium between alleles at two loci) value ≥0.8,
which were found to be in strong LD with a GWAS SNP, were
considered as overlapping with disease-associated loci. 

Results 

Data summary of scQTLbase 

The scQTLbase database provides a comprehensive summary
of sc-eQTL studies conducted up to June 2023. These stud-
ies have expanded to include hundreds or even thousands of
individuals across various tissues and cell types ( 13 ). By man-
ual curation and processing, scQTLbase has successfully in-
corporated a total of 16 single-cell eQTL studies, including
an impressive number of ∼2 750 individuals and approxi-
mately 8.04 million cells (Table 1 ). Notably, blood samples
have been predominantly used due to their ease of obtain-
ment and well-established protocols for isolating high-quality
single cells. As a result, many investigations have focused on
PBMCs to explore cellular genetic effects, while other stud-
ies have delved into samples like iPSCs, brain and lung, en-
compassing a diverse range of cell types. For example, PBMCs
comprise various immune cells, red blood cells and platelets,
whereas iPSCs possess the potential to differentiate into mul-
tiple cell types, including neurons, cardiomyocytes and hepa-
tocytes ( 23 ). In scQTLbase, a total of 57 cell types have been
included through manual curation. Additionally, scQTLbase
encompasses 95 distinct cell states (Figure 1 ), representing a
diverse range of cellular contexts, such as gene exposure (e.g.
‘SIX5+’ in fibroblasts, ‘CD45RA+’ in CD4+ Effector Mem-
ory T cells), cell proliferation at different time points (e.g.
‘day 11’, ‘day 30’ in iPSCs), and cell differentiation at various
stages (e.g. ‘Pulmonary alveolar type I’ and ‘Pulmonary alve-
olar type II’ in Epithelial cells). Furthermore, the scQTLbase
database includes three main types of eQTLs: cell-type-specific
eQTLs (63.82%), response eQTLs (24.34%), and dynamic
eQTLs (5.26%). The database also covers 6.58% variance
eQTLs. 

Web design and interface 

scQTLbase incorporates ∼16 million SNPs significantly asso-
ciated with gene expression at the cell-type or cell-state level.
The database’s homepage offers a concise summary and de-
tailed description of its contents. Users can effortlessly navi-
gate the database through an intuitive and user-friendly top
navigation menu, ensuring quick access to various functions
and features. scQTLbase offers five main functional interfaces
for users to interact effectively with the database: (i) ‘Search’
enables users to easily look for specific genes and SNPs of
interest within the database (Figure 2 A). (ii) ‘UMAP’ allows
users to explore the gene expression patterns across differ-
ent cell types clustered by marker genes in each study (Fig-
ure 2 B). (iii) ‘Genome Browser’ provides a detailed view that
enables users to examine the genomic regions of interest and
explore the associations between SNPs and gene expression in
a genomic context (Figure 2 C). (iv) ‘Colocalization’ facilitates
the visualization of potential colocalization events to gain in-
sights into the shared genetic signals between sc-eQTLs and
user-defined GWAS dataset (Figure 2 D). (v) ‘Trait / Disease’ 
provides an atlas of GWAS-associated sc-eQTLs identified 

through colocalization analysis and linkage disequilibrium 

measurement between GWAS lead SNPs and sc-eQTL vari- 
ants (Figure 2 E). Overall, scQTLbase provides a comprehen- 
sive and user-friendly platform, empowering users to explore,
visualize and analyze sc-eQTLs, which enhances our under- 
standing of gene regulation and its implications for cellular 
function and disease mechanisms. 

Single-cell eQTL searching and querying 

In the search interface of scQTLbase, users can easily query 
sc-eQTLs using either a gene symbol or a dbSNP ID. Once a 
query is performed, the total number of sc-eQTLs associated 

with queried genes or SNPs are displayed, and four summary 
plots are shown to provide an overview of the sc-eQTL land- 
scape. The results are presented in an interactive table with 

informative columns such as gene name, cell type, cell state,
sc-eQTL type, SNP, P -value, beta, standard error (SE), study,
GTEx eQTL, browse gene, and browser SNP. The Gene name 
and SNP columns provide details of the specific gene and SNP 

associated with the sc-eQTL, while the cell type column spec- 
ifies the cell type in which the sc-eQTL was observed. The 
cell state column offers information about the particular state 
or condition of the cell during the sc-eQTL analysis. To cate- 
gorize the sc-eQTL, the sc-eQTL type column classifies them 

into various types, including cell-type-specific eQTL, response 
eQTL, dynamic eQTL, variance eQTL. The Study column 

displays relevant information about the research study from 

which the sc-eQTL data originated, formatted in an author- 
year-journal abbreviation style (e.g. Bryois-2022-Nat. Neu- 
rosci.). The GTEx eQTL column shows whether the sc-eQTL 

is identified in GTEx eQTL from bulk RNA-seq. Two values 
are filled in this column: ‘Yes’ indicates that the sc-eQTL is 
identified in GTEx eQTL data, while ‘No’ indicates that the 
sc-eQTL is not identified in GTEx eQTL data. For each ‘Yes’ 
entry, a hyperlink is provided to access detailed information 

on GTEx eQTL associated with the same SNP-gene pair as 
the sc-eQTL. Additionally, each sc-eQTL record in the table 
is accompanied by two fixed buttons labelled ‘Browse gene’ 
and ‘Browse SNP’ on the right-hand side, enabling users to 

explore the specific sc-eQTL in the genome browser for fur- 
ther investigation. 

To enhance exploration capabilities, users can apply filters 
to refine the sc-eQTLs based on specific criteria, such as sc- 
eQTL type, cell type, cell state or study. By simply clicking 
the search icon or filter icon in the header column (e.g. cell 
type), users can input custom filter keywords (e.g. ‘CD8+ T 

cell’) to narrow down the results based on their specific in- 
terests. Moreover, the table can be sorted based on any pro- 
vided fields, allowing users to arrange the data in either as- 
cending or descending order. Table can be exported, enabling 
users to obtain the data in a format suitable for further cus- 
tomized analysis. For instance, a gene query for ‘BIN3’ yields 
1008 significant sc-eQTL records, comprising 864 cell-type- 
specific eQTLs and 144 response eQTLs across 23 distinct 
cell types. To delve deeper into the data, users can further 
filter the sc-eQTLs by clicking the filter icon in the header 
column (e.g. cell type) and inputting custom keywords (e.g.
CD8+ T cell) to focus specifically on the sc-eQTLs associ- 
ated with CD8+ T cells or any other relevant cell type of 
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Figure 1. The data str uct ure and general function of scQTLbase. The left panel is the sc-eQTL data summary and the right panel is the functionality of 
the database. 
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isualization of cells in UMAP 

n the UMAP section, users can explore the cellular land-
cape by visualizing individual cells colored either by their cell
ype or gene expression values. The left panel of the interface
resents an interactive UMAP embedding, where each point
epresents a specific cell. By selecting the study or gene of in-
erest from the pull-down list at the top of the panel, users can
bserve cellular heterogeneity and gene expression patterns. If
o specific gene is chosen, the UMAP will display distinct cell
ypes using different colors. Conversely, selecting a gene will
olor the UMAP based on normalized gene expression levels.
n the right panel of the interface, an interactive table lists

he marker genes of cell types and sc-eGenes (genes signifi-
antly associated with sc-eQTLs) related to the chosen study.
y clicking on the genes or variants within each record, users
an access detailed information about significant QTLs across
tudies. This feature provides valuable insights into the regu-
atory mechanisms underlying cellular processes and disease
ssociations. 

c-eQTL browsing in the genome browser 

n the ‘Genome Browser’ section, users can actively ex-
lore sc-eQTLs across various cell types using an interactive
enome browser by inputting the gene symbol (e.g. HLA-
RB5), SNP ID (e.g. rs113683581), or genome position

e.g. chr6:32492342–32555316). Users can select the browse
ode by clicking radio button ‘Browse by study’ or ‘Browse
y cell type’. Within the genome browser, three tracks, namely
Genes, Common SNPs, and GWAS are shared across all stud-
ies or cell types. However, upon selecting a specific study, sc-
eQTLs across cell types will be displayed in separate tracks.
Conversely, choosing a particular cell type will showcase sc-
eQTLs across studies in distinct tracks. This allows users to
focus on and compare sc-eQTLs efficiently based on their spe-
cific area of interest. For instance, if users wish to explore the
genetic regulation to the gene ‘HLA-DRB5’ across cell types
in the study ‘Bryois-2022-Nat. Neurosci.’, they can follow
these steps: select the ‘Browse by study’ radio button, choose
‘Bryois-2022-Nat. Neurosci’ from the pull-down list, enter
‘HLA-DRB5’ in the search box and initiate the search. As a
result, all significant sc-eQTLs related to HLA-DRB5 across
eight cell types will be presented in eight individual tracks. By
clicking on a specific data point, users can access detailed in-
formation about the corresponding SNP, including its ID and
P -value. Notably, sc-eQTLs specific to the queried gene are
highlighted in red in the genome browser, while those associ-
ated with other genes are marked in grey. The genome browser
also includes gene structure annotation, GWAS Catalog ( 1 )
risk SNPs and dbSNP ( 17 ) variants. Furthermore, users have
the option to download the browser tracks’ figures in SVG
format by clicking on the ‘Save SVG’ button situated at the
top-right corner of the genome browser. 

Traits / diseases-relevant sc-eQTLs 

To bridge the gap between human genetic effects and dis-
ease observed, we focused on identifying sc-eQTLs associated
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Figure 2. The web interface of scQTLbase. ( A ) Query interface and result visualization for ‘Gene / SNP Search’ in sc-eQTLs. ( B ) Example of UMAP view 

(top panel) and corresponding marker genes / egenes (bottom panel) from the study ‘Van der Wijst-2018-Nat. Genet.’ ( C ) Genome browser view showing 
sc-eQTLs across cell types in the study ‘Jerber-2021-Nat. Genet.’ ( D ) Interface for ‘Colocalization’ and an example of the LocusCompare plot at the gene 
‘BIN1,’ displaying Alzheimer’s disease GWAS P -values and sc-eQTLs P -values in Microglia (Micro) from the study ‘Bryois-2022-Nat. Neurosci.’ ( E ) 
Interf ace f or ‘Traits / Diseases’ and an e xample of sc-eQTLs related to asthma. 
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ith a wide range of traits and diseases. We manually curated
6 GWAS summary statistics and all associations, and gath-
red significant SNPs from 3 333 GWAS datasets collected in
HGRI GWAS catalogue ( 1 ). Through this process, we iden-

ified 3 133 sc-eQTLs co-localized with GWAS signals and
pproximately 0.69 million sc-eQTLs were in linkage dise-
uilibrium (LD) with trait signals. To ensure easy access and
xploration of these associations, we have presented the data
hrough two interactive tables within the ‘Trait / Disease’ sec-
ion, namely the ‘co-localized genes’ and ‘LD-associated vari-
nts’ tables. By default, these tables display all available data,
mpowering users to rapidly identify relevant associations be-
ween GWAS loci and sc-eQTLs. In the ‘co-localized genes’
able, a fixed column on the right-hand side labeled ‘Locus
ompare’ is incorporated. This column features a set of but-
ons, each corresponding to a specific colocalized gene. Upon
electing any button, the LocusCompare plot related to the
hosen gene is displayed. To further refine the results, users
ave the flexibility to apply various filters based on specific
c-eQTL types, cell types, cell states and sources of interest.
dditionally, the table can be sorted based on any provided
elds, allowing users to organize and examine the data in
 manner that aligns with their specific research needs. This
omprehensive approach facilitates an enhanced understand-
ng of the intricate connections between genetic variants and
iseases at the single-cell level. 

ummary and future directions 

e have developed the user-friendly database scQTLbase
y systematically curating and harmonizing sc-eQTL sum-
ary statistic datasets from various studies. This database of-

ers ∼16 million SNPs significantly associated with gene ex-
ression at the cell-type or cell-state level, making it a one-
top portal for sc-eQTL search, UMAP, and genome brows-
ng. Moreover, users can visualize the colocalization results
ased on GWAS datasets of their interest. By integrating sc-
QTL and GWAS data, we identify and display ∼0.69 mil-
ion GWAS-associated sc-eQTLs, providing insights into the
olecular mechanisms underlying complex traits and diseases

t the cellular resolution. Although the field of sc-eQTLs is
till in its early stages ( 6 ), with a current focus on immune
ells or specific tissues such as the brain and lung, we recog-
ize the need to expand these investigations to encompass all
ajor cell types in the human body. Such expansion will yield

aluable insights into the broader landscape of sc-eQTLs and
heir significance across diverse cellular populations. To keep
ace with the increasing number of sc-eQTL datasets from
arge consortium projects, continuous updates to scQTLbase
re essential. We are dedicated to maintaining and upgrading
ur database in line with advances in data, technologies, and
ethods in this field. In conclusion, scQTLbase is the first in-

egrated sc-eQTL database, providing a valuable resource for
nderstanding the genetic basis of complex human traits and
iseases at cellular resolution. Through ongoing updates, this
atabase promises to be an indispensable tool, significantly
dvancing our understanding of the fundamental principles of
ene regulation and their implications in complex traits and
iseases. 

ata availability 

cQTLbase is freely available at: http://bioinfo.szbl.ac.cn/
cQTLbase . 
Supplementary data 

Supplementary Data are available at NAR Online. 
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